Quiz 2
Be sure to show work clearly.
(1) Given the points $P(3,-2,0)$ and $Q(1,4,7)$
a). Find the distance between P and Q .
b) Find the vector $\overrightarrow{P Q}$

(2) Given the vectors $\mathbf{a}=\langle-5,1,2\rangle$ and $\mathbf{b}=\langle-1,0,4\rangle$, find
a) the angle between \mathbf{a} and \mathbf{b}
(Note: In this class, exact answers should always be given unless otherwise stated; that is don't use your calculator to get an approximation)

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \vec{b} \|}=\frac{13}{\sqrt{3 d} \sqrt{17}}
$$

$$
\theta=\cos ^{-1}\left(\frac{13}{\sqrt{510}}\right)
$$

b) $\mathbf{a} \times b$

$$
\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-5 & 1 & 2 \\
-1 & 0 & 4
\end{array}\right|=\langle 4,18,1\rangle
$$

(10 points)
Note:
$\vec{a} \times \vec{b}$ is always orthogonal to
Check your answer by showing it is orthogonal to both a and b both \vec{a} and

$$
\begin{aligned}
& \langle 4,18,1\rangle \cdot\langle-5,1,2\rangle=0 \\
& \langle 4,18,1\rangle \cdot\langle-1,0,4\rangle=0
\end{aligned}
$$ \vec{b}, so these should be zero. I suggest doing this on all your cross products.

c) proj,b
(2 points)

$$
\operatorname{proj}_{a} \vec{b}=\frac{a \cdot}{a} \cdot \vec{b} \vec{a} \cdot \vec{a} \quad\left\langle\frac{-13}{6}, \frac{30}{30}, \frac{13}{15}\right\rangle
$$

projection on a a is a multiple of a?
d) a unit vector in the direction of \mathbf{b}

$$
\vec{u}=\frac{1}{\|\vec{b}\|} \vec{b}
$$

